КАНОНДЫҚ ЖІКТЕУ ӘДІСІМЕН АРЫС ӨЗЕНІ БАССЕЙНІНІҢ АЙЛЫҚ АҒЫНДЫСЫН БАҒАЛАУ ЖӘНЕ БОЛЖАУ

Main Article Content

Сакен Давлетгалиев
Айсулу Турсунова
Айдана Базарбек

Аңдатпа




Жұмыста Арыс өзені бассейнінің су ресурстарын бағалау және болжау үшін ағынды және ағынды қалыптастырушы факторларды бірлескен модельдеу нәтижелерін пайдалану мүмкіндігі қарастырылған. Бұл мәселені шешу үшін канондық жіктеу әдісі қолданылды, ол кездейсоқ процесті (өзен ағындысы) тәуелсіз кездейсоқ шамалар мен кездейсоқ емес функциялардың жиынтығымен сипаттауға мүмкіндік береді. Әдіс сызықтық түрлендірулер класында оңтайлы болып табылады және жіктеу табиғи ортогональды компоненттер бойынша жүзеге асырылады. Арыс өзенінің айлық, жылдық және вегетациялық ағындысы гидрографының болжамдары RCP 4.5 және RCP 8.5 екі сценарий бойынша 2030, 2040 және 2050 жылдарға жасалды. Зерттеу нәтижелері өзен ағындысының 1974–2019 жылдардағы климаттық нормадан 2030, 2040, 2050 жылдарға қарай азаюын және ұлғаюын көрсетті. Өзен ағындысының климаттық сипаттамаларға тәуелділігіне негізделген канондық жіктеу моделін қолдану алынған нәтижелермен негізделген.




Article Details

Бөлім
Гидрология және су шаруашылығы
##submission.authorBiographies##

##submission.authorWithAffiliation##

Г. ғ. д., профессор (әл–Фараби атындағы Қазақ Ұлттық университеті, Алматы, Қазақстан, sdavletgaliev@mail.ru)

##submission.authorWithAffiliation##

Г. ғ. к., қауымдастырылған профессор, Су ресурстары зертханасының басшысы ("География және су қауіпсіздігі институты" АҚ, Алматы, Қазақстан, ais.tursun@bk.ru)

##submission.authorWithAffiliation##

Кіші ғылыми қызметкер ("География және су қауіпсіздігі институты" АҚ, Алматы, Қазақстан, aydanabt@gmail.com)

##submission.citations##

Пресс–релиз МГЭИК. Широкомасштабное, быстрое и усиливающееся изменение климата [Электрон. ресурс]. – 2021. – URL: https://www.ipcc.ch/site/assets/uploads/2021/08/IPCC_WGI–AR6–Press–Release_ru.pdf (дата обращения 21.02.2023).

State of Global Climate 2021 WMO Provisional report. State of Climate in 2021: Extreme events and major impacts [Электрон. ресурс]. – 2021. – URL: https://public.wmo.int/en/media/press–release/state–of–climate–2021–extreme–events–and–major–impacts (дата обращения 21.02.2023).

UN climate report: It’s ‘now or never’ to limit global warming to 1.5 degrees [Электрон. ресурс]. – 2022. – URL: https://reliefweb.int/report/world/un–climate–report–it–s–now–or–never–limit–global–warming–15–degrees–enarruzh (дата обращения 21.02.2023).

МГЭИК. Изменение климата: Обобщающий доклад. Вклад рабочих групп I, II и III в четвертый доклад об оценке Межправительственной группы экспертов по изменению климата. – Женева: Издательство ВМО. – 2007. – 104 с.

Изменение климата. Обобщающий доклад: Вклад Рабочих групп I, II и III в Пятый оценочный доклад Межправительственной группы экспертов по изменению климата / МГЭИК; под ред. Пачаури Р. К, Мейер Л. А. [и др.]. – Женева, 2014. – 163 с.

Hofer S. et. al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6 // Nature Communications. – 2020.

Seneviratne S., Hauser M. Regional Climate Sensitivity of Climate Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles // Earth’s Future. – 2020. – № 8.

Долгих С. А., Смирнова Е. Ю., Сабирова А. У. К вопросу о построении сценариев изменения климата // Гидрометеорология и экология. – 2006. – № 1. – С. 7–19.

Достай Ж. Д., Алимкулов С. К., Сапарова А. А., Мырзахметов А. Б., Баспакова Г. Р. Оценка возобновляемых водных ресурсов казахстанской части бассейна реки Сырдария // Водные ресурсы Центральной Азии и их использование: Матер. междунар. науч.-практ. конф., посвященной подведению итогов объявленного ООН десятилетия «Вода для жизни». – Алматы, 2016. – С. 310–317.

Говоркова В. А., Катцов В. П., Мелешко В. М. и др. Климат России в XXI веке. Оценка пригодности моделей общей циркуляции атмосферы и океана СМIР3 для расчетов будущих изменений климата России // Метеорология и гидрология. – 2008. – Часть 2. – № 8. – С. 5–19.

Добровольский С. Г. Глобальная гидрология. Процессы и прогнозы. – М.: ГЕОС, 2017. – 526 с.

Давлетгалиев С. К., Медеу Н. Н. Сценарные прогнозы ресурсов стока рек Жайык-Каспийского бассейна по отдельным участкам // Вестник КазНУ. – 2017. − № 2(45). − С. 28–40.

Голубцов В.В. Моделирование стока горных рек в условиях ограниченной информации. – Алматы: Казгидромет, 2010. – 232 с.

Сапарова А. А., Загидуллина А. Р., Аппазова Т. Б. Современные тенденции изменения речного стока Арало–Сырдариинского водохозяйственного бассейна в изменяющихся климатических условиях // Региональные проблемы водопользования в изменяющихся климатических условиях: Материалы международной научно-практической конференции, 11-12 ноября 2014 г. – Уфа, 2014. – С. 183–188.

Шульц В. Л. Реки Средней Азии. – Л: Гидрометеоиздат, 1965. – Ч. 1-2. – 691 с.

Ресурсы поверхностных вод СССР. Средняя Азия. Бассейн р. Сырдарьи. – Л.: Гидрометеоиздат, 1969. – Т. 14. – Вып. 1. − 512 с.

Попова В. П. Прогнозирование водности притоков реки Сырдарья в пределах Республики Казахстан: Дис. работа на соиск. учен. степ. канд. геогр. наук. – Алматы, 1998. – 148 с.

Схема комплексного использования и охраны водных ресурсов бассейна р. Сырдарьи с притоками. Том I. Книга 1. Сводная записка. – Алматы, 2008 – 156 с.

Bergström S., Forsman A. Development of a conceptual deterministic rainfall-runoff model // Hydrology Research. – 1973. – V. 4(3). – P. 147–170.

Горшкова А. Т., Урбанова О. Н., Каримова А. И. Основные этапы моделирования стока рек с площадью водосбора менее 100000 км2 // Международный научно–исследовательский журнал. –2015. – № 8(39). – С. 66–71.

Костин В. Н., Тишина Н. А. Статистические методы и модели: Учебное пособие. – Оренбург: ОГУ, 2004. – 138 с.

Давлетгалиев С. К. Групповое моделирование гидрографов месячного стока // Водные ресурсы. – 2013. – №4. – С. 350–358.

Пугачёв В. С. Теория случайных функций. – М.: Физматгиз, 1962. – 884 с.

Вентцель Е. С. Теория вероятностей: Учеб. для вузов. – 6-е изд. стер. – М.: Высш. шк., 1999. – 576 c.

Бусалаев И. В., Давлетгалиев С. К., Куперман И. Г. Моделирование гидрографа стока методом канонического разложения // Проблемы гидроэнергетики и водного хозяйства. − 1973. − Вып.10. − С.143–152.

Бусалаев И. В., Давлетгалиев С. К. Описание речного стока в нескольких створах методом многомерного канонического разложения // Метеорология и гидрология. − 1982. − №3. − С. 81-87.

Давлетгалиев С. К. Совместное моделирование рядов годового стока рек методом канонического разложения // Метеорология и гидрология. – 1991. – №10. – С. 102–108.

СП 33-101-2003. Определение основных расчетных гидрологических характеристик – Москва.: Государственный комитет Российской Федерации по строительству и жилищно-коммунальному комплексу, 2004. – 73 с.

Davletgaliev S. K., Alimkulov S. K., Talipova E. K. The possibility to applying simulated series for compile scenario forecasting river runoff // Environmental Earth Sciences. – 2020. – V. 79, Issue 16.

Davletgaliev S. K., Alimkulov S. K., Tursunova A. A., Talipova E. K. Long term forecast of the monthly flow hydrograph of Yertis river (v. Boran) based on combined statistical modeling of the river flow and precipitation // News of the National Academy of Sciences of the Republic of Kazakhstan / Series of geology and technical sciences. – 2023. – V. 6. Number 462. – P. 70–84.